Page URL:

Infertility and nutrition: a response

16 February 2009
By Misty Hatfield and Dr John MacMillan
Associate Professor, senior staff specialist in Clinical Genetics with Genetics Health Queensland, Brisbane, Australia and Misty Hatfield, a senior embryologist for one of the largest IVF clinics in Queensland, Australia.
Appeared in BioNews 495
Dian Shepperson Mills' 'Commentary' in BioNews 493 (2/2/2009) 'Why fertility patients should consider what they eat before resorting to more invasive treatment' directs us to observational studies on the links between diet and (in)fertility as well as pregnancy outcomes. Since the original observations were made in the 1980s there has been an increasing understanding of the importance of optimal male and female nutrition as an adjunct to fertility treatments, not an alternative.

A large number of factors affecting fertility in women can be affected by, if not attributed to, lifestyle issues. Obesity in women has been clearly linked to ovulatory disorders, poorer pregnancy outcomes, and an increased likelihood of miscarriage. In an IVF setting, obese patients generally demonstrate a resistance to ovarian stimulation and require larger doses of gonadotrophins to effect the same response as patients in the healthy weight range (1). Many studies have demonstrated that even moderate weight loss can be sufficient to stimulate the resumption of spontaneous ovulation. However, ovulatory disorders are not purely the domain of the obese. Some studies have demonstrated that disorders of ovulation can also be linked to increased consumption of energy from trans-fats (when compared with carbohydrates or unsaturated fats). A mere extra two per cent of daily energy derived from dietary trans-fats (instead of unsaturated fats) may be enough to double an individual's risk of infertility from ovulatory disorder (2). On the flipside, the likelihood of ovulatory disorders occurring appears to be reduced by multivitamin intake - perhaps due to the protective effects of antioxidants (3).

Antioxidants also play in important role in oocyte (egg cell) quality. The normal mature oocyte is suspended in metaphase II (MII) [a stage in gamete development] where it stays until fertilisation occurs and metaphase is resumed. An excess of reactive oxygen species (ROS) due to insufficient antioxidant activity can adversely affect the supporting granulosa and luteal cells and result in reduced gonadotrophin action, DNA damage and may prevent the resumption of metaphase (4).

Men wishing to father children would also do well to watch their nutrient intake. Excess ROS production in men has been linked to lipid peroxidation of the sperm membranes and DNA fragmentation. Membrane damage is associated with a reduced ability of the sperm to bind to the oocyte, whilst DNA fragmentation is strongly associated with poor embryo development and poor pregnancy outcomes (5).

In addition, optimal nutrition during gametogenesis, pregnancy and after birth is now recognised as a determinant of future childhood and adult health status and susceptibility to disease (6,7,8). More intriguing still is the suggestion that environmental factors (grandpaternal nutritional status during mid childhood) can be linked to the mortality risk ratio (in their grandsons) two generations later (9). One mechanism by which this may occur is through changes in gene expression without changes in DNA sequence. Such 'epigenetic' changes may result from environmental factors such as folate status and in some situations possibly the IVF process itself (10). The UK committee on Toxicology concluded in 2008 (11) that 'There is reasonable evidence that epigenetic changes associated with environmental exposures during development can result in adverse effects'. We should clearly include 'environmental exposure' to nutritional deficiencies in this context. Nutritional intervention periconceptually, throughout pregnancy and in early childhood should be a priority for health care systems around the world. In Australia there is a particular need for this in relation to the burden of chronic disease in the indigenous Aboriginal community (12).

01) Norman & Clark  1998. Obesity and reproductive disorders: A review. Reprod, Fert and Development. 10(1) ; 55-63.
|  23 January 2022
02) Chavarro JE et al.  2007. Dietary fatty acid intakes and the risk of ovulatory infertility. Am J Clin Nutr. 85;231-237.
|  23 January 2022
03) Chavarro JE et al. Use of multivitamins, intake of B vitamins and risk of ovulatory infertility. 2008. Fertil Steril 89; 668-676.
|  23 January 2022
04) Ruder EH et al. 2008. Oxidative stress and antioxidants: exposure and impact on female fertility. Hum Reprod Update. 14;345-357.
|  23 January 2022
05) Tremellen 2008. Oxidative stress and male infertility - a clinical perspective. Hum Reprod . 14(3); 243-258.
|  23 January 2022
06) Barker DJP 1998. In utero programming of chronic disease. Clinical Science 95;115-128.
|  23 January 2022
07) McMillen C et al 2008. Developmental origins of adult health and disease: the role of periconceptual and fetal nutrition. Basic Clin Pharm Toxicol. 102;82-89.
|  23 January 2022
08) Waterland RA et al 2006. Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus. Hum Mol Genet. 15; 705-716.
|  23 January 2022
09) Pembrey M et al 2005. Sex-specific, sperm-mediated transgenerational responses in humans. Eur J Hum Genet.14:159-166.
|  23 January 2022
10) van Vliet J et al 2007. Epigenetic mechanisms in the context of complex disease. Cell Mol Life Sci. 64;1351-1538
|  23 January 2022
11) Committee on Toxicology of chemicals in food, consumer products and the environment. Statement on the COT workshop on transgenerational epigenetics.
|  23 January 2022
12) Case A et al 2004. Exploring the pathways leading from disadvantage to end-stage renal disease for Indigenous Australians. Social Science and Medicine. 58; 767-785.
|  23 January 2022
12 August 2013 - by Emma Stoye 
There is no evidence to suggest taking antioxidant supplements will help infertile women become pregnant, according a review of fertility clinic trials published in The Cochrane Library...
5 December 2011 - by Dr Caroline Hirst 
Women receiving fertility treatment are more likely to become pregnant if they take multivitamin supplements, reports a UK pilot study...
24 January 2011 - by Dr Marianne Kennedy 
Couples struggling to conceive may be more likely to have a child if the man takes certain vitamins or other antioxidants, according to scientists....
21 October 2009 - by Sarah Pritchard 
Women who are overweight or obese have lower chances of successful IVF treatment, according to researchers reporting at the American Society for Reproductive Medicine (ASRM) conference in Atlanta, US, this week. The researchers, from Michigan State University in the US, found that women who were defined as clinically obese were up to 35 per cent less likely to conceive and have a live baby, and twice as likely to have a stillbirth, than their lighter cou...
15 June 2009 - by Dr Sarah Spain 
A diet rich in steak and other red meat might hinder a man's chances of conceiving a child, say Spanish researchers. According to their study published in the journal 'Fertility and Sterility', a healthy antioxidant-rich diet might be the key to sperm quality and motility. Men who eat a lot of fruit and vegetables, in particular peppers, spinach and citrus fruits, have higher quality and faster swimming sperm....
2 February 2009 - by Dian Shepperson Mills 
Eating is something we do every day. It sustains us and keeps us healthy, and poor food choice can make us unhealthy. The maturing ova, sperm, endometrium and fetus depend upon nutrients for development. If the diet is laced with environmental endocrine-disrupting chemicals, trans-fats, refined sugars, or excess additives, or...
to add a Comment.

By posting a comment you agree to abide by the BioNews terms and conditions

Syndicate this story - click here to enquire about using this story.