Page URL:

Genome editing in mouse fetuses may pave way in humans

15 October 2018
Appeared in BioNews 971

Genome editing has been successfully used to treat a serious liver disease in fetal mice while still in-utero.

A team led by Dr Kiran Musunuru from the University of Pennsylvania and Dr William Peranteau of the Children's Hospital of Philadelphia, successfully employed base editing to change specific sections of DNA according to a paper published last week in Nature Medicine.

'We are excited about the potential of this approach to treat genetic diseases of the liver and other organs for which few therapeutic options exist.' Said Dr Peranteau.

The team cured several mice of hereditary tyrosinemia type one (HT1), a serious disease caused by a mutation in the Fah gene, where a build-up of metabolic products causes severe damage to the liver. 

Rather than target the Fah gene directly, the approach disabled an enzyme-coding gene called Hpd, thereby preventing toxic metabolite accumulation. However, Dr Musunuru commented that the same approach used in this study to 'disrupt a mutation's effects' could in the future be used to 'directly correct the mutation'.  

To ensure the changes were made in the right tissues, the base editing reagents were delivered into a fetal vein which connects to the liver. 'We wanted to make sure we got the genome editor into the liver rather than everywhere else' said Dr Musunuru.

The treated mice were born healthy and maintained their health until the end of the study, outliving the mice in the group treated with the nitisinone, the current standard of care for HT1.

Base editing uses a modified form of CRISPR Cas to alter single DNA base pairs. enabling exceedingly precise targeting of specific sections of mutated DNA whilst minimising off-target effects. 'We think this represents a safer and more precise way to make changes in the genome,' said Dr Musunuru. 'It's is the better way forward if you want to take CRISPR into the clinic.

While HT1 is quite rare, and most sufferers are treated successfully with nitisinone, the study acts as a proof-of-concept for the use of CRISPR to treat many congenital diseases before birth. However, using this approach in humans is still a way off. 'A significant amount of work needs to be done before prenatal gene editing can be translated to the clinic' Dr Peranteau cautions.


CRISPR cures inherited disorder in mice, paving way for genetic therapy before birth
STAT |  8 October 2018
CRISPR Editing Heads Off Disease in Mouse Livers
The Scientist |  9 October 2018
Gene editing in human embryos takes step closer to reality
The Guardian |  8 October 2018
In utero CRISPR-mediated therapeutic editing of metabolic genes
Nature Medicine |  8 October 2018
8 July 2019 - by Dr Melanie Krause 
For the first time, US researchers have used a combination of genome editing and antiretroviral therapy to eliminate HIV from mice...
29 April 2019 - by Dr Maria Botcharova 
Scientists have used genome editing in mouse fetuses to edit a gene that causes severe lung disease...
29 October 2018 - by Shaoni Bhattacharya 
Researchers have identified a new enzyme to make the genome editing approach, CRISPR, able to target more locations within the genome...
22 October 2018 - by Dr Charlott Repschlager 
Researchers have successfully used genome editing in mice to correct a genetic mutation that causes the liver disease phenylketonuria (PKU)...
8 October 2018 - by Antony Starza-Allen 
Japan has introduced draft guidelines on genome editing that would permit the use of the approach, including CRISPR/Cas9, in human embryos for research purposes...
28 August 2018 - by Dr Alexander Ware 
A new approach to treating Marfan syndrome may be on the horizon, thanks to developments in genome editing...
13 August 2018 - by Dr Alexander Ware 
Controversy surrounding last year's report of a disease-gene being edited out of human embryos continues with a fresh round of evidence...
30 July 2018 - by Dr Rachel Huddart 
Almost three-quarters of Americans support the use of genome editing to treat serious genetic conditions in babies, a survey has found...
to add a Comment.

By posting a comment you agree to abide by the BioNews terms and conditions

Syndicate this story - click here to enquire about using this story.