Page URL:

Stem cell transplants 'safe and successful' in monkeys

28 May 2014
Appeared in BioNews 755

Stem cells created from a monkey's own skin cells can be transplanted back into the animal without a high risk of tumour formation, researchers have reported.

In the first study of its kind looking at the safety of stem cells in animals closely related to humans, scientists worked on rhesus macaques. Previous studies have focused on mice, and one of the main problems is that when stem cells are implanted, tumours are very likely to form. Reassuringly, this does not seem to be the case in monkeys.

In the study, published in Cell Reports, the researchers took cells from a monkey's skin and reprogrammed them into a stem-cell-like state, making induced pluripotent stem cells, or iPSCs. They then coaxed these iPSCs into becoming bone-forming cells, before implanting them into the same animal the cells were taken from.

It took 20 times as many cells to form tumours in the monkeys compared to what was previously seen in mice. Lead researcher Dr Cynthia Dunbar, of the National Heart, Lung, and Blood Institute in the USA said 'tumour formation is very slow and requires large numbers of iPSCs', a result that bodes well for the therapeutic use of stem cells in humans.

iPSCs, which are made from a patient's own cells, can theoretically be transformed into any other kind of cell. As such, developing their use in the clinic could lead to a range of treatments, for instance for conditions such as heart disease, diabetes or Parkinson's disease.

Martin Pera, professor of stem cell sciences at the University of Melbourne, told Discovery News that this work is 'another step towards the development of safe stem cell therapies for human disease'.

Speaking to Nature News, Dr Ashleigh Boyd, a stem cell researcher at University College London who was not involved in the work, said: 'It's important because the field is very controversial right now'. Because of the contentious nature and high clinical potential of the research, more work needs to be done to validate the results. Indeed, Professor Pera told Discovery News that 'the study is small, it relates to the safety of only one type of specialised cell, and does not show directly that the bone grafts would heal or repair fractures'.

Dr Dunbar now hopes to repeat the work using heart, liver and white blood cells. She said: 'We hope the robust model established in this paper can be used to improve the chance that first-in-human iPSC-derived therapies will be safe and effective'.

First test of pluripotent stem cell therapy in monkeys is a success
Eurekalert (press release) |  15 May 2014
New Bone Grown from Monkey's Own Skin Cells
Discovery News |  16 May 2014
New Stem Cell Finding Bodes Well for Future Medical Use in Humans
Scientific American |  16 May 2014
Path to the Clinic: Assessment of iPSC-Based Cell Therapies In Vivo in a Nonhuman Primate Model
Cell Reports |  15 May 2014
4 September 2017 - by Caroline Casey 
Neurons derived from human stem cells have successfully been used to treat and relieve symptoms of Parkinson's disease in a primate animal model...
14 July 2014 - by Julianna Photopoulos 
A paraplegic woman in the USA has developed a growth of nasal tissue in her back eight years after failed stem cell therapy...
2 June 2014 - by Dr Naqash Raja 
Lasers have been used to activate stem cells to repair and regrow damaged teeth in animals...
19 May 2014 - by Alice Plein 
Mice with a viral form of multiple sclerosis are able to walk again after receiving a transplant of human stem cells, scientists report...
6 May 2014 - by Dr Rachael Panizzo 
Heart cells derived from human embryonic stem cells are capable of regenerating damaged heart muscle in primates, a US study has found...
10 March 2014 - by Dr Greg Ball 
Researchers have developed a technique to grow cartilage structures from the stem cells found in human fat tissue. They hope that this will pave the way for ears and noses to be grown in the laboratory and used in transplants...
3 March 2014 - by Dr Naqash Raja 
'Mini livers' grown from mouse stem cells could reduce the need for laboratory testing on animals, thanks to research from the University of Cambridge....
to add a Comment.

By posting a comment you agree to abide by the BioNews terms and conditions

Syndicate this story - click here to enquire about using this story.