Page URL:

TV Review: Brave New World - Biology

5 December 2011
Appeared in BioNews 636

Brave New World: Biology

Channel 4, Monday 14 November 2011

Presented by Dr Roberta Bondar, Mark Evans, Professor Stephen Hawking, Dr Aarathi Prasad, Professor Joy Reidenberg and Professor Lord Robert Winston

'Brave New World: Biology', Channel 4, Monday 14 November 2011

Breakthroughs in biology that 'will transform the resilience and strength of the human body' are the subject of the last episode of Stephen Hawking's brilliant series 'Brave New World'. In just under an hour 'Biology' takes the viewer on a whirlwind tour of some of the newest and most awe-inspiring technologies. We're talking cures for cancer, organ regeneration and experiments in longevity and heritability.

The programme begins on a remote island near Panama with Kevin Tidgewell, a scientist 'obsessed' with cyanobacteria, or 'marine snot', an algae-like substance that produces toxins to kill off competitors in an over-populated ocean. Researchers are now exploiting the bacteria's weapon of marine warfare in the lab, wiping out breast cancer cells by exposing them to one of cyanobacteria's potent chemicals.

Corporal Hernandez is next. He's an ex-marine who had his thigh blown apart in Iraq. Told he would never walk again, Hernandez could have lost hope. Instead, he's the living example of a new way in which the human body can be tricked into healing itself. Thanks to an insertion of a biological structure, which is present in all animal cells and recruits stem cells to produce healthy tissue rather than scar tissue, the damaged area has started to heal. Hernandez is now not only able to stand, but can hit the gym for a run.

The next section continues on the theme of regeneration, but this time the aim is to heal the human heart 'without a scalpel in sight'. Mind blowing footage ensues as open-heart surgery is performed on a one day old mouse. The tiny creature is popped in an ice bucket, before surgeon Dr Hesham Sadek promptly opens its chest cavity, removing 15 percent of the left ventricle. Three weeks after the operation the heart has completely recovered and is back to full size, but this amazing capacity to regenerate heart tissue isn't seen in mice older than seven days. This work demonstrates that the mammalian heart can fix itself, but just forgets how to as it gets older. The next challenge is to find out why and how the heart turns off this ability to regenerate.

But what is it that determines whether or not we live long and healthy lives? Take Elsie and Natalie. Elsie exercises almost every day and eats a healthy, balanced diet, while Natalie is a chain smoker and loves hamburgers. Yet they have two things in common: both are over 80 and neither has ever had a serious disease. They're part of the Wellderly project, which is investigating whether certain genes can help people to live longer. Dr Eric Topol and his colleagues have compared their DNA with that of people who died before the age of 80 to identify a gene which increases the risk of dying younger.

Professor Marcus Pembrey then introduces us to epigenetics, the study of heritable changes in gene expression. Professor Pembrey describes how our lifestyles can affect not only our children, but also our children's children. We learn that a father who smoked as a pre-adolescent will have sons with an increased risk of obesity as early as age nine; that the grandchildren of Swedish men who over-ate as pre-adolescents are more likely to die early; and that women who suffer higher levels of stress while pregnant are more likely to have children with lower intelligence quotients (IQs) and greater emotional difficulties.

All in all, this was a fascinating programme, though a somewhat over-enthusiastic tendency to overstate the potentials of the research let it down at times. It's clear that we are a long way from these results being translated into anything like real-life applications. Nonetheless it was inspiring to see scientists so passionate about their work, and though the programme's occasional over-ebullience might have sometimes seemed a little much, it's likely that a new generation of scientists could find some serious inspiration in the wonderful array of new technologies shown.

Brave New World with Stephen Hawking - Biology
Channel 4 |  21 November 2011
17 June 2013 - by Holly Rogers 
A beginner's tour guide through genetics and epigenetics, this booklet covers much of the fundamental biology behind genetic illness and gives a broad overview of some of the biggest challenges currently faced by researchers in the field. It does not assume any previous knowledge, and gives clear, concise summaries of key historical figures and theories, including a very useful glossary at the back....
12 November 2012 - by Cait McDonagh 
Reading the back cover blurb, I was looking forward to an eye-opening adventure, discovering the ways in which societies have long been fascinated with creating a child by unconventional means. The book also promised to show how this might be possible in the future and I wasn’t disappointed...
16 April 2012 - by Dr Rachael Panizzo 
Epigenetics is a complex subject, so explaining it in just two minutes is a big ask. But that's what the short video clip, 'Health explained: epigenetics', on the BBC website attempts to do. Aimed at a general audience, the video succeeds in giving us a very basic introduction, but doesn't manage to capture what is new and exciting about this field of research...
20 February 2012 - by Rachel Lloyd 
The Pulse-Project is a website which offers a wide range of freely accessible audio and video lectures on the sciences and medical humanities...
31 October 2011 - by James Brooks 
A $10 million prize is on offer for the first laboratory to accurately and economically sequence the genomes of 100 people over 100 years old. The Archon Genomics X Prize was originally founded in 2006 and has been modified so that entrants will now race to decode the centenarians' DNA...
24 October 2011 - by Dr Rebecca Robey 
Living conditions during childhood may have a long-term effect on DNA, according to new research by British and Canadian scientists. The findings, published in the International Journal of Epidemiology, may explain why some people who grow up in socioeconomic deprivation have health disadvantages later in life, despite improvements in their living conditions in adulthood...
5 September 2011 - by Rosemary Paxman 
The immediate impact of environmental factors like diet, smoking and stress on health are well understood. But less is known about how your lifestyle can directly effect the health of your unborn children and grandchildren...
9 August 2010 - by Dr Jay Stone 
Regrowing human tissue is one step closer after scientists found manipulating two key proteins in mouse muscle cells enabled them to continue multiplying...
to add a Comment.

By posting a comment you agree to abide by the BioNews terms and conditions

Syndicate this story - click here to enquire about using this story.