Page URL:

Setback in non-embryonic stem cell use

2 August 2010
Appeared in BioNews 569

Stem cells created from a patients' own tissue are subtly different from those derived from embryos in ways that may affect their therapeutic potential, two independent research groups have found. Both studies found iPS (induced pluripotent stem) cells retain an 'epigenetic memory' of their tissue of origin. The findings are a setback for those hoping to use iPS cells to regenerate a patients' damaged tissue, circumventing the ethical dilemma of using embryos as a source of stem cells.

A study published in Nature found differences in DNA methylation - 'stop signs' in DNA that turn genes off - in mouse and embryonic stem cells (ES cells). These epigenetic differences were 'detectible to the point where we could literally use the methylation signatures to tell the lineage…where the iPS cells had come from', said Professor George Daley from Harvard Medical School and the Children's Hospital Boston.

Moreover, iPS cells behaved differently when they were prompted to differentiate into mature blood or bone cells. Bone-derived iPS cells were more efficient at differentiating into mature bone cells and less efficient at differentiating into blood cells, whereas the opposite was observed in blood-derived iPS cells.

'When we select for pluripotency, we haven't necessarily erased all of the epigenetic memory', said Professor Daley. This residual epigenetic memory in iPS cells 'favours their differentiation along lineages related to the donor cell'.

A parallel study published in Nature Biotechnology also found iPS cells vary in gene expression - how much a gene is turned on and producing proteins - and methylation patterns depending on the tissue they originated from, which affects how easily they turn into different mature cell types. Professor Konrad Hochedlinger and colleagues at the Massachusetts General Hospital Center for Regenerative Medicine used iPS cells created from mouse skin, muscle and immune system cells.

Both studies included methods of erasing the epigenetic memory imprinted on the iPS cells. When Professor Daley's team used a different, more challenging technique to reprogramme adult cells - by SCNT  (somatic cell nuclear transfer) - they found that the stem cells generated did not retain an epigenetic signature from their tissue of origin and behaved similar to ES cells.

Professor Daley and colleagues could also remove the DNA methylation patterns by serially reprogramming the iPS cells, or by treating them with chromatin-modifying drugs. Similarly, Professor Hochedlinger observed that iPS cells lose their epigenetic memory and became more similar to ES cells if they underwent multiple cycles of cell division.

These aren't the first studies to find subtle differences between iPS cells. In a Nature paper earlier this year, Professor Hochedlinger found certain developmental genes weren't activated in reprogrammed mouse iPS cells.  Researchers from Stanford School of Medicine also reported in PLoS ONE that iPS cells derived from fat or skin retain some gene activity from their tissue of origin.

These studies suggest the results of earlier disease-modelling research using iPS cells could be misleading because the findings 'may in part not be due to patient-specific abnormalities, as you hope, but rather that there was memory of the cell of origin in our iPS cell', Professor Hochedlinger explains.

Professor Daley cautions: 'everyone working with these cells has to think about the tissues of origin and how that affects reprogramming… These findings cut across all clinical applications people are pursuing and whatever disease they are modelling.'

Adult stem cells retain cellular memory of original tissue
Scientific American |  19 July 2010
iPSCs less pliable than ESCs?
The Scientist |  19 July 2010
Plan for non-embryo stem cell technique suffers setback
The Independent |  20 July 2010
Scientists see new hurdles in push to make stem cells
The Boston Globe |  19 July 2010
Studies reveal iPS cells stay true to their roots
Australian Life Scientist |  22 July 2010
23 May 2011 - by Dr Rebecca Robey 
IPS (induced pluripotent stem) cells from mice can be recognised by their own immune system and destroyed, scientists at the University of California, San Diego, have found...
3 May 2011 - by Dr Marianne Kennedy 
A novel and more efficient method for generating induced pluripotent stem cells (iPSCs) from adult cells using small RNA molecules has been discovered by researchers at the University of Pennsylvania School of Medicine in the USA...
7 February 2011 - by Leo Perfect 
Adult human cells maintain a 'memory' when reprogrammed into a stem cell-like state, US scientists have found. The finding suggests the resulting induced pluripotent stem (iPS) cells are not yet a viable alternative to human embryonic stem (ES) cells for modelling or treating disease...
19 July 2010 - by Dr Lux Fatimathas 
US and Japanese researchers have converted white blood cells (WBC) into stem cells...
7 June 2010 - by Louise Mallon 
Researchers have developed a method of creating large amounts of human embryonic stem (ES) cells using a new technique, which could help to treat a variety of diseases, according to new research published in the journal Nature Biology....
17 May 2010 - by Kyrillos Georgiadis 
US Scientists have produced mouse inner ear hair cells using stem cells, paving the way for a cure for deafness and other related balance disorders...
to add a Comment.

By posting a comment you agree to abide by the BioNews terms and conditions

Syndicate this story - click here to enquire about using this story.