Page URL:

CRISPR used to find new drug target for ALS

12 March 2018
Appeared in BioNews 941

Researchers have used genome editing to reveal genes that could be new therapeutic drug targets for the neurodegenerative condition amyotrophic lateral sclerosis (ALS). 

Findings from the study, published in Nature Genetics, provide new insights into the causes of ALS by revealing genes that either speed up or slow down disease progression. 

In many cases of ALS there is a known genetic element to the disease, often involving mutations in the C9orf72 gene. These mutations lead to abnormal repeats in a stretch of DNA, which in turn can create faulty proteins that form clumps, or aggregates, in the brain. Build up of these proteins cause death of brain and spinal cord cells, leading to muscle breakdown, paralysis and death. 

A large range of genes affect what happens to C9orf72 proteins. Some genes exacerbate the problem, making it much more likely that neurons will build up toxic levels of protein aggregates, the recent study reveals. Other genes have a protective effect. 

The authors aimed to find out what these genes were by using a new application of CRISPR/Cas9. The team combined the system with a genome-wide screen of more than 20,000 genes. The team were able to create knockouts of every gene in the human genome individually. When a gene appeared to influence protein aggregates, the team followed up by knocking out that gene in mouse neurons to analyse the effect. 

Out of 200 genes identified, a gene called TMx2 stood out for its role in cell death. The researchers found that mouse neuronal cells survived in almost 100 percent of cases if Tmx2 was knocked out, compared with just only 10 percent of cells expressing Tmx2.  

The exact role of Tmx2 protein in the cell remains unclear, but it's thought to control other genes involved in the cell death process. 

'Figuring out exactly what Tmx2 normally does in a cell is a good place to start – that would hint at what functions are disturbed when these toxic species kill the cell, and it could point to what pathways we should look into,' said study author Nicholas Kramer.

If Tmx2 could be blocked, then it's possible cell death would be slowed in ALS. 

'We could imagine that Tmx2 might make [a] good drug target candidate,' added study author Michael Haney. 'If you have a small molecule that could somehow impede the function of Tmx2, there might be a therapeutic window there.'

The authors say the same approach could be used to explore progression of other neurological conditions (Huntington's, Parkinson's and Alzheimer's) that share a similar pathology involving toxic proteins. 

'I think it's a really exciting application for CRISPR screens, and this is just the beginning,' said Michael Bassik, another author of the study. 

CRISPR-Cas9 Gene Editing Reveals Potential Therapeutic Targets for ALS
ALS News Today |  8 March 2018
CRISPR–Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity
Nature Genetics |  5 March 2018
CRISPR Human Knockout Screens Identify New Target for ALS
Genetic Engineering and Biotechnology News |  5 March 2018
CRISPR reveals possible ALS drug target
Fierce Biotech |  5 March 2018
Potential drug targets for ALS revealed in Stanford-led study using CRISPR
EurekAlert |  5 March 2018
1 July 2019 - by Dr James Heather 
More than 150 researchers have backed a letter written by senior scientists protesting the move to close one of the UK’s leading mouse-genetics centres at the Harwell Institute in Oxfordshire...
23 April 2018 - by Isobel Steer 
'Cell-free' CRISPR has been developed by scientists at the Christine Care Health System's Gene Editing Institute in Delaware, allowing them to extract cellular DNA and make multiple, significant edits to the genetic code...
26 March 2018 - by Anna Mallach 
Changes in DNA outside that of genes can cause neurodevelopmental disorders, UK researchers have found...
19 March 2018 - by Anna Mallach 
Researchers in the USA have developed a new RNA editing approach, which could be beneficial in treating dementia...
11 December 2017 - by Martha Henriques 
A breakthrough trial has successfully reduced levels of the harmful protein that causes the neurodegenerative disease Huntington's...
25 September 2017 - by Sarah Gregory 
A novel gene therapy can reverse the symptoms and progression of disease in a mouse model of multiple sclerosis...
8 May 2017 - by Lone Hørlyck 
A gene mutation may speed up memory loss and general cognitive decline in people who are at risk of developing Alzheimer’s disease...
14 November 2016 - by Annabel Slater 
Brain tissue from Alzheimer's disease patients shows reduced expression of nuclear genes coding for mitochondrial function...
to add a Comment.

By posting a comment you agree to abide by the BioNews terms and conditions

Syndicate this story - click here to enquire about using this story.