Subscribe to the BioNews newsletter for free

Login
Advanced Search

Search for
BioNews

Like the Progress Educational Trust on Facebook


 


 

Cancer mutations explored using organoids and CRISPR

18 September 2017

By Dr Molly Godfrey

Appeared in BioNews 918

Organoids and CRISPR/Cas9 have been combined in a novel method to study genetic mutations occurring in cancer.

Researchers applied the method to investigate the function of commonly mutated DNA repair genes in the development of colon and breast cancer.

'Within these organoids, we have disabled a single gene using CRISPR/Cas9. This gene normally prevents the accumulation of mutations in the DNA and thereby counteracts colon cancer development. We have eliminated this prevention,' Dr Ruben Van Boxtel, joint first author on the study, told Drug Target Review.

Applying techniques first developed by the researcher Professor Hans Clevers, scientists can grow organoids from a range of tissues, including guts, kidneys and brains, using stem cells. By combining this with the genome editing technique CRISPR/Cas9, which can be used to accurately introduce mutations into cells, the functional effect of genetic mutations found in cancer can be examined.

In a study published in Science by the Clevers group at the Hubrecht Institute in Utrecht, the Netherlands, this combination of techniques was used to investigate the role of DNA repair genes in generating cancer-causing mutations. By individually deleting two DNA repair genes (MLH1 and NTHL1) commonly found mutated in cancer, in human colon organoids, researchers accurately replicated the patterns of mutation accumulation usually observed in, respectively, certain types of colon cancer, and a specific kind of hereditary breast cancer.

'With the help of CRISPR/Cas9 in organoids, we can perfectly mimic this mutation accumulation seen in patients,' said Dr Jarno Drost, the other joint first author.

The processes by which cancer arises and progresses leaves specific patterns or 'mutational signatures' in the DNA. Currently, about 30 different signatures have been identified in different types of cancer. The type of signature can provide information about how the cancer arises and can be used to help predict whether patients will respond to specific treatments.

Removing the gene NTHL1 in organoids closely mimicked the previously identified 'mutational signature 30', whose origin had been unclear. By going back to a patient with hereditary breast cancer in which this mutational signature had been identified, the researchers in this study found a mutation in the NTHL1 gene. This confirmed that the method can replicate what is observed in real cancers, thus paving the way for a greater use of this technique in future studies.

Organoid technology is being increasingly used for a variety of purposes in biological research. Among other applications, novel drugs can now be tested in human tissue organoids instead of animal models or patients, and personalised patient or tumour-specific organoids can be grown.

RELATED ARTICLES FROM THE BIONEWS ARCHIVE

02 October 2017 - by Rachel Reeves 
New potential drug targets have been identified for cancers associated with KRAS gene mutations, which are thought to drive around 20-30 percent of all human cancers...

14 August 2017 - by Ebtehal Moussa 
Over a 100 new genes that may be essential for cancer immunotherapy to work have been identified using a new CRISPR-based screen...
08 May 2017 - by Sarah Pritchard 
Aggressive human prostate and liver tumours have been shrunk in mice by targeting a ‘fused’ gene mutation using CRISPR/Cas9...

HAVE YOUR SAY
Be the first to have your say.

You need to or  to add comments.

By posting a comment you agree to abide by the BioNews terms and conditions


- click here to enquire about using this story.

Published by the Progress Educational Trust

CROSSING FRONTIERS

Public Conference
London
8 December 2017

Speakers include

Professor Azim Surani

Professor Magdalena Zernicka-Goetz

Professor Robin Lovell-Badge

Sally Cheshire

Professor Guido Pennings

Katherine Littler

Professor Allan Pacey

Dr Sue Avery

Professor Richard Anderson

Dr Elizabeth Garner

Dr Andy Greenfield

Dr Anna Smajdor

Dr Henry Malter

Vivienne Parry

Dr Helen O'Neill

Dr César Palacios-González

Philippa Taylor

Fiona Fox

Sarah Norcross

Sandy Starr


BOOK HERE

Good Fundraising Code

Become a Friend of PET HERE and give the Progress Educational Trust a regular donation