Subscribe to the BioNews newsletter for free

Advanced Search

Search for

Like the Progress Educational Trust on Facebook



Cell division genes published

06 April 2010

By Ailsa Stevens

Appeared in BioNews 552

The results of a huge multinational project to pinpoint all the genes and related proteins essential for cell division are to be made publically available for other researchers to use. The €8.5 million study, which forms part of the European Commission-funded MitoCheck Consortium, involved scientists from eleven research institutes, universities and companies in Austria, Germany, UK, Italy and France, and took five years to complete. The research was published in Nature last week.

The researchers, led by Beate Neumann and Thomas Walter of the MitoCheck Project Group, used a technique known as RNA interference (RNAi) to block the activity of specific genes in dividing cell lines. Our genome operates by sending instructions from DNA in the form of mRNA (messenger RNA) for the manufacture of proteins. During RNAi, a type of molecule called short-interfering RNA (siRNA), together with proteins, binds to a gene's mRNA and destroys it before a protein can be produced.

By using fluorescently tagged chromosomes, the researchers could observe the effect of silencing each gene in real time. In total, 190,000 time-lapse movies of 19 million cell divisions were generated. The entire data set is now free to access on the website

The findings identified hundreds of genes as being involved in some of the most basic functions of life, including mitosis, migration and survival. Previously only a handful of such genes had been located and, in most cases, their biological function remains poorly understood.

Two accompanying commentaries in Nature highlighted what made the study so exceptional in comparison to previous work.

Jason Swedlow, Professor of Quantitative Cell Biology at the Wellcome Trust Centre for Gene Regulation and Expression, based at the University of Dundee, pointed to the novel way in which the results were validated as one of the things that 'sets [the] study apart from previous work'. Professor Swedlow was not involved in the study.

'Of more than 500 genes that they implicate in mitosis, most are assigned to this process for the first time and few overlap with those identified in previous mitotic screens', he noted.

To verify their results, the researchers tested whether defective cell division could be corrected by adding the mouse equivalent of a gene that had been silenced. The mouse versions of the genes were different enough that they was not silenced by the same siRNAs that targeted the human versions, but they were similar enough to correct cell division in the defective cells, thus demonstrating the genes' significance.

In an accompanying article, Cecilia Cotta-Ramusino and Stephen Elledge, both based in the Department of Genetics at Harvard University Medical School and not involved in the study, called the work a 'landmark contribution'.

'The advantage of such a fine and articulated classification is that it allows predictions to be made about the reason behind new perturbations — for example, those caused by drugs, treatment conditions or disease states — by comparing their phenotypic signatures with those of known genes', they wrote.

Applying the approach to other cell lines, such as those implicated in cancer, was highlighted as an avenue for further research.

Nature | 04/2010
MitoCheck | 31 March 2010


14 September 2015 - by Dr Julia Hill 
The 2015 Lasker Awards are being given to three scientists who made ground-breaking discoveries in cancer and genetics, and to the organisation Doctors without Borders for its work on the Ebola crisis....
10 May 2010 - by Rosemary Paxman 
Our genetic make-up may influence the likelihood of running into debt, UK and US researchers have found, according to the LSE research magazine....

29 March 2010 - by Dr Will Fletcher 
A recent study has lent more weight to the view that 'Junk DNA' may be anything but junk. A joint effort by the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany and Stanford University, California, US, has uncovered large differences between the non-coding DNA of different individuals, which may be associated with differing levels of disease risk and other traits too...
15 March 2010 - by Dr Will Fletcher 
Sequencing a patient's genome to find the genetic cause of their inherited disease has finally been proven to be a viable clinical approach in two recent independent studies. For some time gene sequencing has been heralded as ushering in a new era of medicine. However, until now, only around 10 people in the world had had their personal genomes sequenced in full, and all of these were healthy people. Now, in the ten years since the first full genome was sequenced (at a cost of ...
08 March 2010 - by Seil Collins 
Scientists have catalogued the genes of microbes living in our gut, information that could be crucial in assessing the impact of microbes on our health. The study, published in Nature, reports the sequencing of 3.3 million microbial genes, a gene set 150 times larger than the human genome....

Be the first to have your say.

You need to or  to add comments.

By posting a comment you agree to abide by the BioNews terms and conditions

- click here to enquire about using this story.

Published by the Progress Educational Trust


Public Conference
8 December 2017

Speakers include

Professor Azim Surani

Professor Magdalena Zernicka-Goetz

Professor Robin Lovell-Badge

Sally Cheshire

Professor Guido Pennings

Katherine Littler

Professor Allan Pacey

Dr Sue Avery

Professor Richard Anderson

Dr Elizabeth Garner

Dr Andy Greenfield

Dr Anna Smajdor

Dr Henry Malter

Vivienne Parry

Dr Helen O'Neill

Dr César Palacios-González

Philippa Taylor

Fiona Fox

Sarah Norcross

Sandy Starr


Good Fundraising Code

Become a Friend of PET HERE and give the Progress Educational Trust a regular donation