Subscribe to the BioNews newsletter for free

Advanced Search

Search for

Like the Progress Educational Trust on Facebook


Gene activity linked to heart disease

18 January 2010

By Dr Aarathi Prasad

Appeared in BioNews 541

A new study by scientists at the University of Cambridge, UK, has indicated that people in the later stages of heart disease carry specific changes in three key genes. However, these alterations to the genes are not permanent mutations, rather, they consist of a reversible change that may be influenced by the environment and diet, and may be responsible for integrating lifestyle and dietary signals to later heart failure.

The investigation, lead by Dr Roger Foo at the university's Division of Cardiovascular Medicine, compared the DNA from healthy hearts with DNA from patients undergoing cardiac transplant for end-stage heart failure. The scientists were looking specifically for a pattern on the DNA known as methylation. Methylation - where a chemical group (called a methyl group) attaches itself to a gene - is one of the ways in which genes are controlled in the body. Varying how much methylation there is can mean that a gene in otherwise good working order may stop functioning, or become over-active - both of which can be harmful depending on the circumstances.

Dr Foo and colleagues identified three genes important in heart function that showed different patterns of methylation in heathly compared to diseased hearts. Two of these, the AMOTL2 and PECAM1 genes, functioned less efficiently in diseased hearts; while the ARHGAP24 gene was found to be overactive.

Evidence indicates that while person to person variation in methylation patterns is partly inherited, it may change throughout life as well. For example, identical twin studies show that although twins are born with identical genes and indistinguishable DNA methylation patterns, as they age, they exhibit remarkable differences in the way their genes are methylated, which in turn influenced how their otherwise identical genes actually functioned and their susceptibility to disease. Because methylation of DNA is something that can be altered by the environment and diet, differential DNA methylation may be responsible for integrating genes and environment - nature and nurture ­- in the progression of heart disease. There is already evidence to suggest that methylated genes could be implicated in other complex diseases like as schizophrenia, diabetes and inflammatory bowel disease. The effect of variable methylation may also answer a question that has previously been difficult to shed light on - how can the same diseases vary from person to person in symptoms, progression and risk of fatality?

Because the reseachers studied DNA from already diseased hearts, they next aim to determine whether the DNA methylation changes that they identified could be an actual cause of, rather than a late side-effect in the progression of heart failure. They hope that unravelling such additional complex layers in the way genes are controlled will improve patient options for therapy and disease management.


11 October 2010 - by Matthew Smart 
Researchers in the US have shown that a gene-based test designed to predict the risk of Coronary Artery Disease (CAD) is only marginally better than existing methods....
11 October 2010 - by Ken Hanscombe 
An international consortium has been set up to study the genetic origins of heart attack and coronary artery disease (CAD)...

Be the first to have your say.

You need to or  to add comments.

By posting a comment you agree to abide by the BioNews terms and conditions

- click here to enquire about using this story.

Published by the Progress Educational Trust
Advertise your products and services HERE - click for further details

Good Fundraising Code

Become a Friend of PET HERE and give the Progress Educational Trust a regular donation