Subscribe to the BioNews newsletter for free

Advanced Search

Search for

Like the Progress Educational Trust on Facebook



Gene affecting breathing may be linked to 'cot death'

10 September 2012

By Dr Zara Mahmoud

Appeared in BioNews 672

US researchers have identified the gene, Atoh1, as vital in mice for their ability to recognise dangerous levels of carbon dioxide in the bloodstream. This study may provide clues to the genes involved in neonatal Sudden Infant Death Syndrome (SIDS) in humans, also known as cot death.

Professor Huda Zoghbi of the Baylor College of Medicine, Texas, USA, who led the study said: 'The death of mice [lacking Atoh1] at birth clued us in that Atoh1 must be needed for the function of some neurons critical for neonatal breathing, so we set out to define these neurons'.

The findings, published in the journal Neuron, showed deletion of the gene Atoh1 in mice from a subset of neurons called the retrotrapezoid nucleus (RTN) neurons, results in an impaired response to levels of carbon dioxide in the blood.

'This population of neurons resides in the ventral brainstem. When there is a change in the makeup of the blood, lack of oxygen or build-up of carbon dioxide, the RTN neurons sense that and tell the body to change the way it breathes', said Mr Wei-Hsiang Huang, a graduate student working on the project with Professor Zoghbi.

RTN neurons, located in the posterior part of the brain called the brainstem, respond to high carbon dioxide levels by sending a message to the respiratory centre of the brain. This triggers an increase in the rate of ventilation, which helps to flush out the excess carbon dioxide and increase levels of oxygen in the blood.

Using gene knockout studies in mice, researchers removed the Atoh gene in increasingly narrow regions of the brain, until they eventually identified the subset of neurons that had the most pronounced effect on the survival rates of young mice. Almost 50 percent of young mice born without the Atoh1 gene in their RTN neurons died at birth.

Their research showed that the protein produced by the Atoh 1 gene was vital in helping the RTN neurons orient themselves in the brainstem during early development. This is critical to establishing a link with a part of the brainstem known as pre-Bötzinger complex (preBötC), which is responsible for establishing a breathing rhythm in response to fluctuating levels of oxygen and carbon dioxide in the blood, to ensure tissues receive sufficient oxygen.

'Without Atoh1 the mice have significant breathing problems because they do not automatically adjust their breathing to decrease carbon dioxide and oxygenate the blood', said Mr Huang.

Another recent study, led by Professor Lavezzi at the Lino University of Milan, Italy, investigating neonatal and prenatal infant deaths found defective RTN neurons in 71 percent of infants that died either of SIDS or sudden intrauterine unexplained death. These two studies, in combination, may offer insights to the genetic factors responsible for SIDS.


29 August 2006 - by Heidi Nicholl 
New research by scientists at Manchester University, UK, has shed further light on Sudden Infant Death Syndrome (SIDS). The research has found that babies with particular variants of three genes are up to 14 times more likely to succumb to the condition. The researchers, led by Dr...
02 February 2006 - by BioNews 
US researchers have identified a gene mutation linked to a 24-fold increased risk of sudden infant death syndrome (SIDS), or 'cot death', in African Americans. The team, based at the University of Chicago, says the altered form of the SCN5A gene makes infants vulnerable to 'environmental challenges' such as...
20 August 2004 - by BioNews 
Genetic mutations that affect vital body functions are linked to an increased risk of cot death, a new US study shows. Researchers at the Rush University Medical School in Chicago studied DNA from 92 babies who had died of sudden infant death syndrome (SIDS), and 92 healthy babies. They looked...
22 July 2004 - by BioNews 
US scientists have uncovered the genetic basis of a form of sudden infant death syndrome (SIDS) - or 'cot death' - associated with testes abnormalities. Team leader Dietrich Stephan says the findings, which will appear in the Proceedings of the National Academy of Sciences, could help save some babies at risk of...

Be the first to have your say.

You need to or  to add comments.

By posting a comment you agree to abide by the BioNews terms and conditions

- click here to enquire about using this story.

Published by the Progress Educational Trust


Public Conference
8 December 2017

Speakers include

Professor Azim Surani

Professor Magdalena Zernicka-Goetz

Professor Robin Lovell-Badge

Sally Cheshire

Professor Guido Pennings

Katherine Littler

Professor Allan Pacey

Dr Sue Avery

Professor Richard Anderson

Dr Elizabeth Garner

Dr Andy Greenfield

Dr Anna Smajdor

Dr Henry Malter

Vivienne Parry

Dr Helen O'Neill

Dr César Palacios-González

Philippa Taylor

Fiona Fox

Sarah Norcross

Sandy Starr


Good Fundraising Code

Become a Friend of PET HERE and give the Progress Educational Trust a regular donation